225k views
5 votes
Compare the strength of HCN (Ka = 4.9×10^-10) with 0.01M aqueous solution of formic acid in which it is 14.5% dissociated.​

User Matec
by
4.4k points

1 Answer

5 votes


{ \boxed{ \purple{ \tt{6.5 * {10}^(2) }}}}

Explanation:-

Applying,


{ \blue{ \tt{ (Strength \: of \: formic \: acid)/(Strength \: of \: HCN)} \: = }} \: \: \: { \green{ \tt{ \sqrt{ (K _(a)(formic \: acid))/(K _(a)(HCN)) }}}}

Degree of dissociation of HCOOH
{ \red{ \sf{( \alpha) = 14.5\%}}}
{ = \red{ \sf{ (14.5)/(100)}}}
{ = \red{ \sf{0.145}}}


{ \purple{ \tt{ K_(a)(HCOOH) = C { \alpha }^(2)}}}


{ \purple{ \tt{ K_(a)(HCOOH) = 0.01 * {(0.145)}^(2) }}}


{ \purple{ \tt{ K_(a)(HCOOH) = 2.1 * {10}^( - 4)}}}

Thus,


{ \blue{ \tt{ (Strength \: of \: formic \: acid)/(Strength \: of \: HCN)} \: = }}{ \green{ \tt{ \sqrt{ \frac{2.1 * {10}^( - 4) }{4.9 * {10}^( - 10) } }}}}


{ = \boxed{ { \red{ \sf{6.5 * {10}^(2)}}}}}

i.e., formic acid is 6.5×10² times stronger than HCN or we can say that HCN is 6.5×10² times weaker than formic acid.

User Reza Taba
by
3.7k points