73.5k views
3 votes
Write a linear equation that models the data in the table

X Y
-6 0
-3 2
0 4
3 6

Equation:?

1 Answer

2 votes

to get the equation of any straight line, we simply need two points off of it, let's use the ones in red provided in the table in the picture below


(\stackrel{x_1}{-3}~,~\stackrel{y_1}{2})\qquad (\stackrel{x_2}{3}~,~\stackrel{y_2}{6}) \\\\\\ \stackrel{slope}{m}\implies \cfrac{\stackrel{rise} {\stackrel{y_2}{6}-\stackrel{y1}{2}}}{\underset{run} {\underset{x_2}{3}-\underset{x_1}{(-3)}}} \implies \cfrac{4}{3 +3} \implies \cfrac{ 4 }{ 6 } \implies \cfrac{2 }{ 3 }


\begin{array}c \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{2}=\stackrel{m}{ \cfrac{2 }{ 3 }}(x-\stackrel{x_1}{(-3)}) \implies y -2 = \cfrac{2 }{ 3 } ( x +3) \\\\\\ y-2=\cfrac{2 }{ 3 }x+2\implies {\Large \begin{array}{llll} y=\cfrac{2 }{ 3 }x+4 \end{array}}

Write a linear equation that models the data in the table X Y -6 0 -3 2 0 4 3 6 Equation-example-1
User Rui Barradas
by
3.9k points