53.6k views
2 votes
Write a linear function f with f(5)=-1 and f(0)=-5
f(x)= ?

1 Answer

3 votes

to get the equation of any straight line, we simply need two points off of it, let's use the provided ones


f(5)=-1\implies \underline{(\stackrel{x}{5}~~,~~\stackrel{y}{-1})}\hspace{5em}f(0)=-5\implies \underline{(\stackrel{x}{0}~~,~~\stackrel{y}{-5})} \\\\[-0.35em] ~\dotfill\\\\ (\stackrel{x_1}{5}~,~\stackrel{y_1}{-1})\qquad (\stackrel{x_2}{0}~,~\stackrel{y_2}{-5}) \\\\\\ \stackrel{slope}{m}\implies \cfrac{\stackrel{rise} {\stackrel{y_2}{-5}-\stackrel{y1}{(-1)}}}{\underset{run} {\underset{x_2}{0}-\underset{x_1}{5}}} \implies \cfrac{-5 +1}{-5} \implies \cfrac{ -4 }{ -5 } \implies \cfrac{4 }{ 5 }


\begin{array}c \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{(-1)}=\stackrel{m}{ \cfrac{4 }{ 5 }}(x-\stackrel{x_1}{5}) \implies y +1 = \cfrac{4 }{ 5 } ( x -5) \\\\\\ y-1=\cfrac{4 }{ 5 }x-4\implies {\Large \begin{array}{llll} y=\cfrac{4 }{ 5 }x-3 \end{array}}

User Sherbang
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories