51.6k views
0 votes
NO LINKS!! Find the center and radius of the circle with the given equation​

NO LINKS!! Find the center and radius of the circle with the given equation​-example-1

1 Answer

0 votes

Answer:


\textsf{center \quad $(x,y)=\left(\; \boxed{6,-2}\; \right)$}


\textsf{radius \quad $r=\boxed{8}$}

Explanation:


\boxed{\begin{minipage}{4 cm}\underline{Equation of a circle}\\\\$(x-a)^2+(y-b)^2=r^2$\\\\where:\\ \phantom{ww}$\bullet$ $(a, b)$ is the center. \\ \phantom{ww}$\bullet$ $r$ is the radius.\\\end{minipage}}

Given equation:


x^2+y^2-12x+4y-24=0

Move the constant to the right side of the equation and collect like variables on the left side of the equation:


\implies x^2-12x+y^2+4y=24

Create perfect square trinomials for the both variables by adding the square of the half the coefficient of x and y to both sides:


\implies x^2-12x+\left((-12)/(2)\right)^2+y^2+4y+\left((4)/(2)\right)^2=24+\left((-12)/(2)\right)^2+\left((4)/(2)\right)^2


\implies x^2-12x+\left(-6\right)^2+y^2+4y+\left(2\right)^2=24+\left(-6\right)^2+\left(2\right)^2


\implies x^2-12x+36+y^2+4y+4=24+36+4


\implies x^2-12x+36+y^2+4y+4=64

Factor the two perfect trinomials:


\implies (x-6)^2+(y+2)^2=64

Therefore:


\textsf{center \quad $(x,y)=\left(\; \boxed{6,-2}\; \right)$}


\textsf{radius \quad $r=\boxed{8}$}

User Simon Mathewson
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories