51.6k views
0 votes
NO LINKS!! Find the center and radius of the circle with the given equation​

NO LINKS!! Find the center and radius of the circle with the given equation​-example-1

1 Answer

0 votes

Answer:


\textsf{center \quad $(x,y)=\left(\; \boxed{6,-2}\; \right)$}


\textsf{radius \quad $r=\boxed{8}$}

Explanation:


\boxed{\begin{minipage}{4 cm}\underline{Equation of a circle}\\\\$(x-a)^2+(y-b)^2=r^2$\\\\where:\\ \phantom{ww}$\bullet$ $(a, b)$ is the center. \\ \phantom{ww}$\bullet$ $r$ is the radius.\\\end{minipage}}

Given equation:


x^2+y^2-12x+4y-24=0

Move the constant to the right side of the equation and collect like variables on the left side of the equation:


\implies x^2-12x+y^2+4y=24

Create perfect square trinomials for the both variables by adding the square of the half the coefficient of x and y to both sides:


\implies x^2-12x+\left((-12)/(2)\right)^2+y^2+4y+\left((4)/(2)\right)^2=24+\left((-12)/(2)\right)^2+\left((4)/(2)\right)^2


\implies x^2-12x+\left(-6\right)^2+y^2+4y+\left(2\right)^2=24+\left(-6\right)^2+\left(2\right)^2


\implies x^2-12x+36+y^2+4y+4=24+36+4


\implies x^2-12x+36+y^2+4y+4=64

Factor the two perfect trinomials:


\implies (x-6)^2+(y+2)^2=64

Therefore:


\textsf{center \quad $(x,y)=\left(\; \boxed{6,-2}\; \right)$}


\textsf{radius \quad $r=\boxed{8}$}

User Simon Mathewson
by
5.0k points