58.1k views
0 votes
Dentify on which quadratic function is positive.

Y = 2x^2 - 17x + 30

Identify on which quadratic function is negative.

Y = - x^2 - 6x - 8

A explanation on the answers would be appreciated!

(Lots of points!)

User Crayons
by
3.9k points

2 Answers

5 votes

Explanation:

Let us identify which quadratic function is positive. Yeah, let's start.

Y =
{ \red{ \sf{2 {x}^(2) - 17x + 30}}}

By using factorisation method,


{ \red{ \sf{2 {x}^(2) - 12x - 5x + 30}}}

Take common factors


{ \red{ \sf{2x(x - 6) - 5(x - 6)}}}


{ \red{ \sf{(2x - 5)}}} \: \: \: \: \: \: \: || \: \: \: \: \: { \red{ \sf{(x - 6)}}}


{ \red{ \sf{2x - 5 = 0}}} \: \: || \: \: { \red{ \sf{x - 6 = 0}}}


{ \red{ \sf{2x = 5}}} \: \: \: \: \: \: \: \: \: || \: \: \: \: { \red{ \boxed{ \green{ \sf{x = 6}}}}}


{ \red{ \sf{{ ( \cancel2)/( \cancel2)x}}}} = { \red{ \sf{ (5)/(2)}}}


{ \red{ \boxed{ \green{ \sf{x = (5)/(2)}}}}}

____________________________________

Y =
{ \blue{ \sf {{ - x}^(2) - 6x - 8}}}

By using factorisation method,


{ \blue{ \sf{ - {x}^(2) - 2x - 4x - 8}}}

Take common factors


{ \blue{ \sf{ - x(x + 2) - 4(x + 2)}}}


{ \blue{ \sf{( - x - 4)}}} \: \: \: \: \: || \: \: \: \: \: { \blue{ \sf{(x + 2)}}}


{ \blue{ \sf{- x - 4 = 0}}} \: \: \: \: \: || \: \: \: \: \: { \blue{ \sf{x + 2 = 0}}}


{ \blue{ \boxed{ \green{ \sf{x = -4}}}}} \: \: \: \: \: || \: \: \: \: \: { \blue{ \boxed{ \green{ \sf{x = -2}}}}}

Hence, the first quadratic function is positive and second quadratic function is negative.

User Akkusativobjekt
by
4.8k points
7 votes

Answer:


\textsf{$y = 2x^2 - 17x + 30$: \quad $\left(-\infty, (5)/(2)\right) \cup (6, \infty)$}


\textsf{$y = - x^2 - 6x - 8$: \quad $\left(-\infty, -4\right) \cup (-2, \infty)$}

Explanation:

A function is positive when it is above the x-axis, and negative when it is below the x-axis.

---------------------------------------------------------------------------------

Given quadratic equation:


y = 2x^2 - 17x + 30

Factor the equation:


\implies y = 2x^2 - 17x + 30


\implies y = 2x^2 - 5x-12x + 30


\implies y=x(2x-5)-6(2x-5)


\implies y=(x-6)(2x-5)

The x-intercepts of the parabola are when y = 0.

To find the x-intercepts, set each factor equal to zero and solve for x:


\implies x-6=0 \implies x=6


\implies 2x-5=0 \implies x=(5)/(2)

Therefore, the x-intercepts are x = ⁵/₂ and x = 6.

The leading coefficient of the given function is positive, so the parabola opens upwards.

The function is positive when it is above the x-axis.

Therefore, the function is positive for the values of x less than the smallest x-intercept and more than the largest x-intercept:


  • \textsf{Solution: \quad $x < (5)/(2)$ \;and \;$x > 6$}

  • \textsf{Interval notation: \quad $\left(-\infty, (5)/(2)\right) \cup (6, \infty)$}

---------------------------------------------------------------------------------

Given quadratic equation:


y = - x^2 - 6x - 8

Factor the equation:


\implies y = - x^2 - 6x - 8


\implies y = -(x^2 +6x +8)


\implies y = -(x^2 +4x +2x+8)


\implies y = -((x(x+4)+2(x+4))


\implies y = -(x+4)(x+2)

The x-intercepts of the parabola are when y = 0.

To find the x-intercepts, set each factor equal to zero and solve for x:


\implies x+4=0 \implies x=-4


\implies x+2=0 \implies x=-2

Therefore, the x-intercepts are x = -4 and x = -2.

The leading coefficient of the given function is negative, so the parabola opens downwards.

The function is negative when it is below the x-axis.

Therefore, the function is negative for the values of x less than the smallest x-intercept and more than the largest x-intercept:


  • \textsf{Solution: \quad $x < -4$ \;and \;$x > -2$}

  • \textsf{Interval notation: \quad $\left(-\infty, -4\right) \cup (-2, \infty)$}
Dentify on which quadratic function is positive. Y = 2x^2 - 17x + 30 Identify on which-example-1
Dentify on which quadratic function is positive. Y = 2x^2 - 17x + 30 Identify on which-example-2
User Shay Shmeltzer
by
5.3k points