29.4k views
8 votes
Explain Step By Step how to solve the following equation by factoring:

3x^2+22x-45

User Hjhill
by
3.3k points

1 Answer

6 votes


\huge \sf \dag \: Answer :


\rm 3 {x}^(2) + 22x - 45

The values of a, b, and c are obtained, namely

  • a = 3, b = 22, c = -45

with the values of a, b, and c above we determine the value of x, then :


\longmapsto \sf x_(1,2) = \frac{ - b \pm \sqrt{ {b}^(2) - 4ac } }{2a}


\longmapsto \sf x_(1,2) = \frac{ - 22 \pm \sqrt{ {22}^(2) - 4(3)( - 45)} }{2(3)}


\longmapsto \sf x_(1,2) = ( - 22 \pm √(484 - 4( - 135)) )/(6)


\longmapsto \sf x_(1,2) = \frac{ - 22 \pm \sqrt[]{484 + 540} }{6}


\longmapsto \sf x_(1,2) = ( - 22 \pm √(1.024) )/(6)


\longmapsto \sf x_(1,2) = ( - 22 \pm32)/(6)

with that we get the values of x, namely :


\longmapsto \rm x_(1) = \bf (10)/(6) = 1 (2)/(3)


\longmapsto \sf x_(2) = \bf - 9

Solution Set = {1, -9}

-I Hope This Helps!

User Jia Gao
by
3.6k points