Answer:
9 years
Explanation:
Continuous Compounding Formula
![\large \text{$ \sf A=Pe^(rt) $}](https://img.qammunity.org/2023/formulas/mathematics/high-school/tq5nsjt4fbbk802m7b60nvqksjolt0zq08.png)
where:
- A = Final amount.
- P = Principal amount.
- e = Euler's number (constant).
- r = Annual interest rate (in decimal form).
- t = Time (in years).
Given values:
- P = $36,000
- A = $39,786.15
- t = 2.5 years
Substitute the given values into the formula and solve for r to find the annual interest rate:
![\implies \sf 39786.15=36000 \cdot e^(2.5r)](https://img.qammunity.org/2023/formulas/mathematics/college/1znu9cwqabeixjhlj6px49eiujrutky07x.png)
![\implies \sf (39786.15)/(36000)= e^(2.5r)](https://img.qammunity.org/2023/formulas/mathematics/college/40bejzpt7paw3i93y5e2g1m41tn2cxkt7v.png)
![\implies \sf \ln \left((39786.15)/(36000)\right)=\ln e^(2.5r)](https://img.qammunity.org/2023/formulas/mathematics/college/dntpp5d0wsleuoa0rexg1kkvxou4fqg0tg.png)
![\implies \sf \ln \left((39786.15)/(36000)\right)=2.5r](https://img.qammunity.org/2023/formulas/mathematics/college/yy0biw2qtixl3i5lohswmzuebobd6kydlb.png)
![\implies \sf (1)/(2.5)\ln \left((39786.15)/(36000)\right)=r](https://img.qammunity.org/2023/formulas/mathematics/college/zde0rjwy0umlihg0sics27cfdigjdpixo5.png)
![\implies \sf r=(2)/(5)\ln \left((39786.15)/(36000)\right)](https://img.qammunity.org/2023/formulas/mathematics/college/e9et07aftz64jem0uc9lxzpvddpxjpb93l.png)
![\implies \sf r=0.03999996933...](https://img.qammunity.org/2023/formulas/mathematics/college/b1mytl57qf69p2v2k6yf17d3b6wiqrjds7.png)
![\implies \sf r=0.04\;(2\;d.p.)](https://img.qammunity.org/2023/formulas/mathematics/college/uwkj7osha941zp8syz0d9n0247xe5o9npb.png)
Therefore, the annual interest rate is 0.04 = 4%.
To calculate how many years it will take for $36,000 to grow to $51,806.67, substitute the values into the formula and solve for t:
![\implies \sf 51806.67=36000 \cdot e^(0.04t)](https://img.qammunity.org/2023/formulas/mathematics/college/4kajf7g6cxv90til6lbp604ubhen78ycx3.png)
![\implies \sf (51806.67)/(36000)= e^(0.04t)](https://img.qammunity.org/2023/formulas/mathematics/college/jbbbjx88eh4z21b3ta0b0ul15f51at8mo5.png)
![\implies \sf \ln\left((51806.67)/(36000)\right)= \ln e^(0.04t)](https://img.qammunity.org/2023/formulas/mathematics/college/qmxuvwoczdzq57kzdkguvk96pnde1y4jjo.png)
![\implies \sf \ln\left((51806.67)/(36000)\right)= 0.04t](https://img.qammunity.org/2023/formulas/mathematics/college/feqo3rdhq3th5wvb1pgewzo2si0xzm5yce.png)
![\implies \sf (\ln\left((51806.67)/(36000)\right))/(0.04)=t](https://img.qammunity.org/2023/formulas/mathematics/college/mu1lr0m1gnpmqrnm4gh5si4aoj63iufvof.png)
![\implies \sf t=9.10 \; (2\;d.p.)](https://img.qammunity.org/2023/formulas/mathematics/college/9vqxxdxh0cgxl1t9jrytunsw7zalt6azqh.png)
Therefore, it will take about 9 years for $36,000 to grow to $51,806,67.