Answer:
![\textsf{Intercept form}: \quad y=(3)/(2)(x+4)(x+10)](https://img.qammunity.org/2023/formulas/mathematics/high-school/561ofg2hmafk8eg7kf16zbogb5karllo2j.png)
![\textsf{Standard form}: \quad y=(3)/(2)x^2+21x+60](https://img.qammunity.org/2023/formulas/mathematics/high-school/lgvkjq1sutmv4z9v42cgwqc5efn60er0i6.png)
Explanation:
![\boxed{\begin{minipage}{6 cm}\underline{Intercept form of a quadratic equation}\\\\$y=a(x-p)(x-q)$\\\\where:\\ \phantom{ww}$\bullet$ $p$ and $q$ are the $x$-intercepts. \\ \phantom{ww}$\bullet$ $a$ is some constant.\\\end{minipage}}](https://img.qammunity.org/2023/formulas/mathematics/college/nx69qa8sbkkpr2ph7vobcjod9pyfdvalg6.png)
If the x-intercepts are (-4, 0) and (-10, 0) then:
Substitute the values of p and q into the formula:
![\implies y=a(x-(-4))(x-(-10))](https://img.qammunity.org/2023/formulas/mathematics/high-school/yw1nqixax8cehotdc06lzxjafuef0hj4t3.png)
![\implies y=a(x+4)(x+10)](https://img.qammunity.org/2023/formulas/mathematics/high-school/v4i9wn1tgnggui5br5itzz3r3fqyl4nvnm.png)
To find a, substitute the given point on the curve P (-6, -12) into the equation:
![\implies -12=a(-6+4)(-6+10)](https://img.qammunity.org/2023/formulas/mathematics/high-school/mn9zmrdttpwqehjt0361m54wqwv2gj6qnt.png)
![\implies -12=a(-2)(4)](https://img.qammunity.org/2023/formulas/mathematics/high-school/3czew0130vz7mm2wtswabdqx4rf8ad2key.png)
![\implies -12=-8a](https://img.qammunity.org/2023/formulas/mathematics/high-school/ync6yiicux8yj0ntf960mvbrx62u9hy59w.png)
![\implies a=(-12)/(-8)](https://img.qammunity.org/2023/formulas/mathematics/high-school/ol19n706kjgu2sdcktqsu7ikhvmxfd25hl.png)
![\implies a=(3)/(2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/zpw6md2kc7bhpk59v2dsyqrjlz8bfps19p.png)
Substitute the found value of a into the equation:
![\implies y=(3)/(2)(x+4)(x+10)](https://img.qammunity.org/2023/formulas/mathematics/high-school/ujj43juglwzbzm0bw19x4cejmp4oame8hd.png)
Expand to write the equation in standard form:
![\implies y=(3)/(2)(x^2+14x+40)](https://img.qammunity.org/2023/formulas/mathematics/high-school/vu7dgqt3kmuxnfswkfr5c9rhhg94oizbo7.png)
![\implies y=(3)/(2)x^2+21x+60](https://img.qammunity.org/2023/formulas/mathematics/high-school/xgosq9gx1z6lp8ai77ljjop3hzq7yk6n2f.png)