Answer:
![\textsf{Intercept form}: \quad y=(2)/(5)(x-5)(x-12)](https://img.qammunity.org/2023/formulas/mathematics/high-school/wv116vfdgqfeu6mroecmkntgrig0zwkmje.png)
![\textsf{Standard form}: \quad y=(2)/(5)x^2-(34)/(5)x+24](https://img.qammunity.org/2023/formulas/mathematics/high-school/a4bhfaniqnrbnypvi106s16c6jjyucyi5w.png)
Explanation:
![\boxed{\begin{minipage}{6 cm}\underline{Intercept form of a quadratic equation}\\\\$y=a(x-p)(x-q)$\\\\where:\\ \phantom{ww}$\bullet$ $p$ and $q$ are the $x$-intercepts. \\ \phantom{ww}$\bullet$ $a$ is some constant.\\\end{minipage}}](https://img.qammunity.org/2023/formulas/mathematics/college/nx69qa8sbkkpr2ph7vobcjod9pyfdvalg6.png)
If the x-intercepts are (5, 0) and (12, 0) then:
Substitute the values of p and q into the formula:
![\implies y=a(x-5)(x-12)](https://img.qammunity.org/2023/formulas/mathematics/high-school/dmtrytng7g2sbwwbsfxvdo1chfv16dmym2.png)
To find a, substitute the given point on the curve P (7, -4) into the equation:
![\implies -4=a(7-5)(7-12)](https://img.qammunity.org/2023/formulas/mathematics/high-school/oaz8vaxnmehnvururih0h80rqxs3ju8br5.png)
![\implies -4=a(2)(-5)](https://img.qammunity.org/2023/formulas/mathematics/high-school/ne67mxyc9kh0ds13mow3hp3iwj5b0j70yl.png)
![\implies -4=-10a](https://img.qammunity.org/2023/formulas/mathematics/high-school/5v61myzw5mlk2yy6j4m3j9vx4i5q66rpfb.png)
![\implies a=(-4)/(-10)](https://img.qammunity.org/2023/formulas/mathematics/high-school/38tfi9dknie2ltnjv3ahhok4c1yjxe0mq0.png)
![\implies a=(2)/(5)](https://img.qammunity.org/2023/formulas/mathematics/high-school/8t6d0fwxnlog7s3i5j1ivhogyob6vz2h94.png)
Substitute the found value of a into the equation:
![\implies y=(2)/(5)(x-5)(x-12)](https://img.qammunity.org/2023/formulas/mathematics/high-school/nf56x8f87o1etpek6eto27l3n89sqno67q.png)
Expand to write the equation in standard form:
![\implies y=(2)/(5)(x^2-17x+60)](https://img.qammunity.org/2023/formulas/mathematics/high-school/jalphy7us2fg3l5lecmberoj7i634pexj3.png)
![\implies y=(2)/(5)x^2-(34)/(5)x+24](https://img.qammunity.org/2023/formulas/mathematics/high-school/ttl8k2zjv3mnjj1rq1x32wdtgmhgevddvx.png)