52.0k views
1 vote
The American bullfrog (Rana catesbeiana) can jump a distance of

nearly 15 times its length! If a bullfrog starts on a horizontal log and
leaps with a velocity of 4.40 m/s at an angle of 37.0° to the horizontal,
what distance can it cover?

1 Answer

1 vote

Answer:

Approximately
1.90\; {\rm m} (assuming that
g = 9.81\; {\rm m\cdot s^(-2)} and that air resistance on the bullfrog is negligible.)

Step-by-step explanation:

It is given that the initial velocity
u is at an angle of
\theta = 37.0^(\circ)} above the horizontal. Therefore:

  • Initial vertical velocity:
    u_(y) = u\, \sin(\theta) \approx 2.64799\; {\rm m \cdot s^(-1)}.
  • Initial horizontal velocity:
    u_(x) = u\, \cos(\theta) \approx 3.51400\; {\rm m \cdot s^(-1)}.


If air resistance on the bullfrog is negligible, final vertical velocity right before landing will be the opposite of the initial vertical velocity:


v_(y) = (-u_(y)) = (-2.64799)\; {\rm m\cdot s^(-1)}.

Change in vertical velocity:


(v_(y) - u_(y)) = (-2.64799) \; {\rm m\cdot s^(-1)} - 2.64799 \; {\rm m\cdot s^(-1)} \approx (-5.29598)\; {\rm m\cdot s^(-1)}.

Vertical acceleration of the bullfrog will be
a = (-g) = (-9.81)\; {\rm m\cdot s^(-2)} while the frog is in the air. Therefore, time required for the velocity to change will be:


\begin{aligned} t &= (v_(y) - u_(y))/(a_(y)) \\ &= (v_(y) - u_(y))/((-g)) \\ &\approx \frac{(-5.29598)\; {\rm m\cdot s^(-1)}}{(-9.81)\; {\rm m\cdot s^(-2)}} \\ &\approx 0.53985\; {\rm s}\end{aligned}.

If air resistance on the bullfrog is negligible, horizontal velocity will be constant:
v_(x) = u_(x) \approx 3.51400\; {\rm m\cdot s^(-2)}. After
t \approx 0.53985\; {\rm s} in the air, the horizontal displacement of the bullfrog will be:


\begin{aligned}x_(x) &= v_(x)\, t \\ &\approx 3.51400\; {\rm m\cdot s^(-1)} * 0.53985\; {\rm s} \\ &\approx 1.90\; {\rm m} \end{aligned}.

Therefore, this bullfrog will cover a distance of approximately
1.90\; {\rm m}.

User SeekingStillness
by
5.4k points