Let f be defined by the function f(x) = 1/(x^2+9)
(a) Evaluate the improper integral
or show that the integral diverges
(b) Determine whether the series ∑n=3∞ f(n) converges or diverges State the conditions of the test used for determining convergence or divergence
(c) Determine whether the series ∑n=1∞(−1)n(en⋅f(n))=∑n=1∞(−1)n(n2+9)en converges absolutely, converges conditionally, or diverges (image put below)