Answer:
Part A
![(x-r)^2+(y-s)^2=t^2](https://img.qammunity.org/2023/formulas/mathematics/college/r3gzi8svkod7vd1imvjrctt78boc8x98b5.png)
where:
- (r, s) is the center of the circle.
- (x, y) is a point on the circle.
- t is the radius of the circle.
Part B
Domain = [-3, 17]
Range = [-14, 6]
Part C
Point (9, 1) is inside the border of the circle.
Explanation:
Part A
![\boxed{\begin{minipage}{9 cm}\underline{Pythagoras Theorem} \\\\$a^2+b^2=c^2$\\\\where:\\ \phantom{ww}$\bullet$ $a$ and $b$ are the legs of the right triangle. \\ \phantom{ww}$\bullet$ $c$ is the hypotenuse (longest side) of the right triangle.\\\end{minipage}}](https://img.qammunity.org/2023/formulas/mathematics/college/tkqg31g6idakf8yi5aha1urflbd8katgm7.png)
From inspection of the given triangle:
Substitute these values into the formula to derive the standard equation of the circle:
![\boxed{ (x-r)^2+(y-s)^2=t^2}](https://img.qammunity.org/2023/formulas/mathematics/college/7y0mbcpfsotodf7owqmw0o6icv0x46ol3v.png)
where:
- (r, s) is the center of the circle.
- (x, y) is a point on the circle.
- t is the radius of the circle.
Part B
Given the center of the circle (r, s) is (7, -4) and the radius (t) is 10.
The domain of the circle is the x-value of the center minus and plus the radius:
![\begin{aligned}\implies \textsf{Domain}&=[r-t,r+t]\\&= [7-10, 7+10] \\&= [-3, 17]\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/4fuzayvhbl0lniu9ku9pai8z7nquehrd72.png)
The range of the circle is the y-value of the center minus and plus the radius:
![\begin{aligned}\implies \textsf{Range}&=[s-t,s+t]\\&=[-4-10, -4+10]\\& = [-14, 6]\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/97ld43dz3ry92ojlpsvtwuq47i5z6nimt6.png)
Part C
Substitute (r, s) = (7, –4) and t = 10 into the derived equation from part A:
![\implies (x-r)^2+(y-s)^2=t^2](https://img.qammunity.org/2023/formulas/mathematics/college/xwt7evjh939x9gq0p7iqp9rk8nhqy8xr4b.png)
![\implies (x-7)^2+(y-(-4))^2=10^2](https://img.qammunity.org/2023/formulas/mathematics/college/c65p2fiemt3ml31vzd7cgl16dp3m5mbytp.png)
![\implies (x-7)^2+(y+4)^2=100](https://img.qammunity.org/2023/formulas/mathematics/college/h7kmyns3b5lxnu9zj4sev8uk8j4zhsayrc.png)
Substitute the given point (9, 1) into the equation:
![\begin{aligned}\implies (9-7)^2+(1+4)^2&=2^2+5^2\\&=4+25\\&=29\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/s7ndqeyp08xkz8df1y9nc0jfnuvaqkem2g.png)
As 29 < 100, the point (9, 1) is inside the border of the circle.