Answer:
156.7 m (nearest tenth)
Explanation:
Define the variables:
- Let d = distance in meters.
- Let v = speed in kilometers per hour.
If the distance needed to stop a car varies directly as the square of its speed:
![\boxed{d \propto v^2 \implies d=kv^2}](https://img.qammunity.org/2023/formulas/mathematics/college/ygab0bqplcz5djklnvmt0ax6w8pq7jhjhc.png)
where k is the constant of proportionality.
Given:
To find the constant of proportionality, k, substitute the given values into the equation:
![\begin{aligned}\implies 120&=k(70)^2\\k&=(120)/(70^2)\\k&=(6)/(245)\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/uuqrofnxn0o54mfvs6th6vykpe0nwsnm0v.png)
Substitute the found value of k back into the formula to create an equation for the given relationship:
![\implies d=(6v^2)/(245)](https://img.qammunity.org/2023/formulas/mathematics/college/4m0w6x4zbssgdwx7wi8puebkievvd5vjbt.png)
To find the distance (in meters) required to stop a car at 80 km/h, substitute v = 80 into the equation:
![\implies d=(6(80)^2)/(245)](https://img.qammunity.org/2023/formulas/mathematics/college/6i7vjozi8nzseaf846xujieb05abmznkad.png)
![\implies d=(6\cdot 6400)/(245)](https://img.qammunity.org/2023/formulas/mathematics/college/v805bzuug18uqo6ds8gzarn1p4171dv6qf.png)
![\implies d=(7680)/(49)](https://img.qammunity.org/2023/formulas/mathematics/college/kf1pzvphvym0447q82jug8mw72nxk9b3y6.png)
![\implies d=156.73469...\; \sf m](https://img.qammunity.org/2023/formulas/mathematics/college/kxqodolqbmxs5n17hh2frps00b0limw8ko.png)
![\implies d=156.7\; \sf m\; (nearest \;tenth)](https://img.qammunity.org/2023/formulas/mathematics/college/1cqi36kmyhq06abafmj15l3q9ucozygon4.png)
Therefore, the distance required to stop a car at 80 km/h is: