Answer:
(0, 6)
Explanation:
Given function:
![y=\log_4(2x+64)+3](https://img.qammunity.org/2023/formulas/mathematics/high-school/868orkgy13wug1r3g9v534k032wjdd5l5o.png)
The y-intercept of a function is the point at which the curve crosses the y-axis, so when x = 0.
Therefore, to find the y-intercept, substitute x = 0 into the function:
![\implies y=\log_4(2(0)+64)+3](https://img.qammunity.org/2023/formulas/mathematics/high-school/bfdffpznjf88up6wn4wtcu7dfwt5ti0bsx.png)
![\implies y=\log_4(64)+3](https://img.qammunity.org/2023/formulas/mathematics/high-school/3ix5x1b7rr5078acsuyiouw2quuurqvwh2.png)
Rewrite 64 as 4³:
![\implies y=\log_4(4)^3+3](https://img.qammunity.org/2023/formulas/mathematics/high-school/xp2ddzjxm08t7rcavs6g8uagfzb5e1kiui.png)
![\textsf{Apply the log power law}: \quad \log_ax^n=n\log_ax](https://img.qammunity.org/2023/formulas/mathematics/college/poc4hr9bzbvr2cj7jmd9h4cm8x92thr2v8.png)
![\implies y=3\log_4(4)+3](https://img.qammunity.org/2023/formulas/mathematics/high-school/zaurkmfboer7xh19apdk8vb87l9lbg5b8j.png)
![\textsf{Apply log law}: \quad \log_aa=1](https://img.qammunity.org/2023/formulas/mathematics/high-school/oaeb4kaq6st2bg8sjmdk8c0poqcc4hu0en.png)
![\implies y=3(1)+3](https://img.qammunity.org/2023/formulas/mathematics/high-school/k3699bmoi232e3vob1fffgazlla9hktarp.png)
![\implies y=3+3](https://img.qammunity.org/2023/formulas/mathematics/high-school/ps4xe5tq011gaeoqjoat5vjkermfvrr41l.png)
![\implies y=6](https://img.qammunity.org/2023/formulas/mathematics/college/j6wwrm94ogx8u0pdrl5056hfevguotg209.png)
Therefore, the y-intercept of the given function is (0, 6).