161k views
4 votes
F(x)=x^2+1 what is f(f(x))?

2 Answers

4 votes

Answer:


f[f(x)]=x^4+2x^2+2

Explanation:

Given function:


f(x)=x^2+1

To find the composite function f[f(x)], substitute the function f(x) in place of the x in function f(x):


\begin{aligned}\implies f[f(x)]&=f(x^2+1)\\&=(x^2+1)^2+1\\&=(x^2+1)(x^2+1)+1\\&=x^4+x^2+x^2+1+1\\&=x^4+2x^2+2\end{aligned}

User Nilkn
by
4.1k points
3 votes

Answer:

f(f(x)) =
x^(4) + 2x² + 2

Explanation:

to evaluate f(f(x)), substitute x = f(x) into f(x)

f(f(x))

= f(x² + 1)

= (x² + 1)² + 1 ← expand factor using FOIL

=
x^(4) + 2x² + 1 + 1

=
x^(4) + 2x² + 2

User Ratna Dinakar
by
4.6k points