16.1k views
5 votes
Express your answer as a polynomial in standard form.

f(x)= -3x+5
g(x)=x^2+2x+15
Find: (g∘f)(x)

1 Answer

5 votes

Answer:
(g \circ f)(x)=9\text{x}^2-36\text{x}+50\\\\

=====================================================

Step-by-step explanation:

The notation (g∘f)(x) is the same as g(f(x))

We'll start with the outer function g(x). Then replace each x with f(x). Afterward plug in f(x) = -3x+5 for the right hand side only.

This is what the steps look like


g(\text{x})=\text{x}^2+2\text{x}+15\\\\g(f(\text{x}))=(f(\text{x}))^2+2f(\text{x})+15\\\\g(f(\text{x}))=(-3\text{x}+5)^2+2(-3\text{x}+5)+15\\\\g(f(\text{x}))=9\text{x}^2-30\text{x}+25-6\text{x}+10+15\\\\g(f(\text{x}))=9\text{x}^2-36\text{x}+50\\\\

Therefore,


(g \circ f)(x)=9\text{x}^2-36\text{x}+50\\\\

You can use tools like WolframAlpha, GeoGebra, and Desmos as ways to confirm the answer.

User JohnZaj
by
4.9k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.