Answer:
Explanation:
Solution
Solve with the quadratic formula
3k2+k−3=0 : k=(−1+√376)/6 , k=(−1−√376 )/6 (Decimal: k=0.84712…, k=−1.18046…)- Answer
Steps
3k2+k−3=0
Solve with the quadratic formula
For a quadratic equation of the form ax^2+bx+c=0,
the solutions are x1, 2=(−b±√b^2−4ac)/2a where a=3, b=1, c=−3
Substituting we have
k1, 2= [(−1±√1^2−4· 3(−3)]/2· 3
Apply rule 1^a=1 , therefore 1^2=1
=√1+4· 3· 3=√1+36
√1^2−4· 3(−3)=√37
Therefore,
k1, 2=(−1±√37)/2· 3
k1, 2=(−1±√37)/6
Separate the solutions
k1=(−1+√37)/6
k2=(−1−√37)/6
The solutions to the quadratic equation are:
k=(−1+√37)/6 , k=(−1−√37)/6
k1=0.84712 k2=−1.18046