160k views
1 vote
Help meh please because I don’t understand this

Help meh please because I don’t understand this-example-1
User Kortemy
by
7.9k points

1 Answer

2 votes

Answer:


\textsf{a) \quad $(2)/(5)$}


\textsf{b) \quad $(5)/(2)$}

Explanation:

Question a)

Given expression:


\left((4)/(25)\right)^{(1)/(2)}

Rewrite 4 as 2² and 25 as 5²:


\implies \left((2^2)/(5^2)\right)^{(1)/(2)}


\textsf{Apply the exponent rule} \quad \left((a)/(b)\right)^c=(a^c)/(b^c):


\implies \frac{(2^2)^{(1)/(2)}}{(5^2)^{(1)/(2)}}


\textsf{Apply the exponent rule} \quad (a^b)^c=a^(bc):


\implies \frac{2^{(2\cdot(1)/(2))}}{5^{(2\cdot(1)/(2))}}


\implies (2^1)/(5^1)


\implies (2)/(5)

Question b)

Given expression:


\left((4)/(25)\right)^{-(1)/(2)}

Rewrite 4 as 2² and 25 as 5²:


\implies \left((2^2)/(5^2)\right)^{-(1)/(2)}


\textsf{Apply the exponent rule} \quad \left((a)/(b)\right)^c=(a^c)/(b^c):


\implies \frac{(2^2)^{-(1)/(2)}}{(5^2)^{-(1)/(2)}}


\textsf{Apply the exponent rule} \quad (a^b)^c=a^(bc):


\implies \frac{2^{(2\cdot -(1)/(2))}}{5^{(2\cdot -(1)/(2))}}


\implies (2^(-1))/(5^(-1))


\textsf{Apply the exponent rule} \quad a^(-n)=(1)/(a^n):


\implies (1)/(2^1 \cdot 5^(-1))


\implies (1)/(2 \cdot 5^(-1))


\textsf{Apply the exponent rule} \quad (1)/(a^(-n))=a^n:


\implies (5^1)/(2)


\implies (5)/(2)

User Pamma
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories