92.9k views
2 votes
In a G.P. the third term is 24, and the sixth term is 192. Find the tenth term.​

1 Answer

3 votes


{ \boxed{ \red{ \bold{3072}}}}

Explanation:

Given,


{ \green{ \sf{ {ar}^(2) = 24}}} \: { \to} \: { \tt{ {eq}^(n) (1)}}


{ \green{ \sf{ {ar}^(5) = 192}}} \: { \to} \: { \tt{ {eq}^(n) (2)}}

From Eqⁿ (2),


{ \green{ \sf{ {ar}^(2). {r}^(3) = 192}}}


{ \green{ \sf{24. {r}^(3) = 192}}}


{ \green{ \sf{ {r}^(3) = (192)/(24)}}}


{ \green{ \sf{ {r}^(3) = 8}}}


{ \green{ \sf{ {r}^(3) = {2}^(3)}}}


{ \boxed{ \purple{ \sf{r = 2}}}}

From Eqⁿ (1)


{ \blue{ \sf{ {ar}^(2) = 24}}}


{ \blue{ \sf{a {(2)}^(2) = 24}}}


{ \blue{ \sf{4a = 24}}}


{ \blue{ \sf{a = (24)/(4)}}}


{ \boxed{ \purple{ \sf{a = 6}}}}

10th term is,


{ \orange{ \sf{ {ar}^(9) }}}


{ \orange{ \sf{6 {(2)}^(9)}}}


{ \orange{ \sf{6(512)}}}


{ \bold{ = }}{ \boxed{ \red{ \bold{3072}}}}

User Xenteros
by
7.4k points