92.9k views
2 votes
In a G.P. the third term is 24, and the sixth term is 192. Find the tenth term.​

1 Answer

3 votes


{ \boxed{ \red{ \bold{3072}}}}

Explanation:

Given,


{ \green{ \sf{ {ar}^(2) = 24}}} \: { \to} \: { \tt{ {eq}^(n) (1)}}


{ \green{ \sf{ {ar}^(5) = 192}}} \: { \to} \: { \tt{ {eq}^(n) (2)}}

From Eqⁿ (2),


{ \green{ \sf{ {ar}^(2). {r}^(3) = 192}}}


{ \green{ \sf{24. {r}^(3) = 192}}}


{ \green{ \sf{ {r}^(3) = (192)/(24)}}}


{ \green{ \sf{ {r}^(3) = 8}}}


{ \green{ \sf{ {r}^(3) = {2}^(3)}}}


{ \boxed{ \purple{ \sf{r = 2}}}}

From Eqⁿ (1)


{ \blue{ \sf{ {ar}^(2) = 24}}}


{ \blue{ \sf{a {(2)}^(2) = 24}}}


{ \blue{ \sf{4a = 24}}}


{ \blue{ \sf{a = (24)/(4)}}}


{ \boxed{ \purple{ \sf{a = 6}}}}

10th term is,


{ \orange{ \sf{ {ar}^(9) }}}


{ \orange{ \sf{6 {(2)}^(9)}}}


{ \orange{ \sf{6(512)}}}


{ \bold{ = }}{ \boxed{ \red{ \bold{3072}}}}

User Xenteros
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories