Answer:
I suppose we start with sin³(2*x) and we want to get:
(1/2)*sin(2*x)*(1 - cos(4*x))
Here we will use the relationships:
cos²(x) + sin²(x) = 1
and
cos²(x) = (1 + cos(2x))/2
Now let's start:
sin³(2*x) = sin(2*x)*sin²(2*x)
and we can write:
sin²(2*x) = 1 - cos²(2*x)
replacing that in the above equation we get:
sin³(2*x) = sin(2*x)*sin²(2*x) = sin(2*x)*(1 - cos²(2*x))
now we can use: cos²(2*x) = (1 + cos(2*2*x))/2
cos²(2*x) = (1 + cos(4*x))/2
if we replace that in the equation above we get:
sin³(2*x) = sin(2*x)*(1 - cos²(2*x)) = sin(2*x)*( 1 - (1 + cos(4*x))/2)
sin³(2*x) = sin(2*x)*( 1 - 1/2 - cos(4*x)/2)
sin³(2*x) = sin(2*x)*( 1/2 - cos(4*x)/2)
sin³(2*x) = sin(2*x)*( 1 - cos(4*x))/2
sin³(2*x) = (1/2)*sin(2*x)*( 1 - cos(4*x))