Let's use the variable x to represent the average speed and d to represent the total distance.
Then, let's calculate the time needed for each part:
The first third has a speed of 2 mph, so the time is:
![\begin{gathered} \text{distance}=\text{speed}\cdot\text{time} \\ (d)/(3)=2\cdot t \\ t=(d)/(6) \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/wer2s4f4ycqyrtbjgjnnbn9lyp10sbvu1c.png)
For the second third, we have a speed of 3 mph, so:
![\begin{gathered} (d)/(3)=3\cdot t \\ t=(d)/(9) \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/1ed0fujwd9b2b5go6uvfsf4rpxj0ma8hqs.png)
The last third has a speed of x, so:
![\begin{gathered} (d)/(3)=x\cdot t \\ t=(d)/(3x) \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/4eyzbval833nuxw28ecxnms93l6nbq3zet.png)
Then, the average speed is the total distance over the total time, so:
![\begin{gathered} x=\frac{d}{t_{\text{total}}} \\ x=(d)/((d)/(6)+(d)/(9)+(d)/(3x)) \\ x=(1)/((1)/(6)+(1)/(9)+(1)/(3x)) \\ x=(1)/((3x+2x+6)/(18x)) \\ x=(18x)/(5x+6) \\ 1=(18)/(5x+6) \\ 5x+6=18 \\ 5x=12 \\ x=2.4 \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/y5sj6ca7hhm9yfnamj1akn1nut2kh631hy.png)
The average speed of the trip is 2.4 m/s.