Answer:
sin(α + β) = -84/205
tan(α + β) = 84/187
Step-by-step explanation:
To find sin(α + β), we will use the following identity
![\begin{gathered} \sin ^2\theta+\cos ^2\theta=1 \\ \text{Then} \\ \sin ^2(\alpha+\beta)^{}+\cos ^2(\alpha+\beta)^{}=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nzl5hfo6t1pt1m1w70awitccqbzdzqnvuo.png)
So, solving for sin(α + β), we get:
![\sin (\alpha+\beta)=\pm_{}\sqrt[]{1-\cos^2(\alpha+\beta)}](https://img.qammunity.org/2023/formulas/mathematics/college/mrzrr9nkr1uc4wbq2z0ibsmwvvhw6ee1we.png)
Now, we can replace cos(α + β) = -187/205 to get:
![\begin{gathered} \sin (\alpha+\beta)=\pm\sqrt[]{1-((187)/(205))^2} \\ \sin (\alpha+\beta)=\pm(84)/(205) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/asc46ipw6uisk6g20s7yiusmystzd7mutl.png)
Then, α + β is on quadrant III. It means that the sine of the angle is negative. Therefore
sin(α + β) = -84/205
Finally, to add tan(α + β), we will use the following
![\tan (\alpha+\beta)=(\sin (\alpha+\beta))/(cos(\alpha+\beta))](https://img.qammunity.org/2023/formulas/mathematics/college/znct2t0pl0up8eo6wny1h0775xz2hiwnn8.png)
Replacing the values, we get:
![\tan (\alpha+\beta)=(-(84)/(205))/(-(187)/(205))=(-84*205)/(205*(-187))=(84)/(187)](https://img.qammunity.org/2023/formulas/mathematics/college/vrabwhgv7ei1ilr39hplavcfk6pcqyea6s.png)
Therefore
tan(α + β) = 84/187