We are given the following function
![((1)/(3))^(2-3t)](https://img.qammunity.org/2023/formulas/mathematics/college/4e1th2w6dtzkglz3uw96xwtz9sq8w7xic6.png)
Let us re-write this function in the following form.
![f(t)=ka^t](https://img.qammunity.org/2023/formulas/mathematics/college/688pba5ozk3m194blfhis9448qbc6aigp4.png)
Where k is a constant.
Step 1:
Split the powers using the multiplication rule of exponents.
![a^(x+y)=a^x\cdot a^y](https://img.qammunity.org/2023/formulas/mathematics/college/cbsic2u62s5c9f1h28im8tv4r0c39yvhh1.png)
Applying the above rule, the function becomes
![((1)/(3))^(2-3t)=((1)/(3))^2\cdot((1)/(3))^(-3t)](https://img.qammunity.org/2023/formulas/mathematics/college/qdkyi6fzhr2ebxmhb0x8ykiwbjwvm5j4y2.png)
Further simplifying, the function becomes
![((1)/(3))^2\cdot((1)/(3))^(-3t)=(1)/(9)\cdot((1)/(3))^(-3t)](https://img.qammunity.org/2023/formulas/mathematics/college/kgysas6zzy10p4uxukntw2rilwds2aha0i.png)
Step 2:
Apply the power rule of exponents
![a^(xy)=(a^x)^y](https://img.qammunity.org/2023/formulas/mathematics/college/7pnnyq0b1x936yq6dx689z2a83ufsmr9dw.png)
So, the function becomes
![(1)/(9)\cdot((1)/(3))^(-3t)=(1)/(9)\cdot(((1)/(3))^(-3))^t](https://img.qammunity.org/2023/formulas/mathematics/college/gqkrp9z8kpjelahcfo34rtqfcqk5fnptnx.png)
Further simplifying the function becomes
![(1)/(9)\cdot(((1)/(3))^(-3))^t=(1)/(9)\cdot(27^{})^t](https://img.qammunity.org/2023/formulas/mathematics/college/j1wy2bkknwlahyuje3xp7bbmxhsvg82x8l.png)
Therefore, the function is
![f(t)=(1)/(9)\cdot27^t](https://img.qammunity.org/2023/formulas/mathematics/college/50xaigir6izzklbberay3t05lyzag9ppef.png)
Where k = 1/9 and a = 27