175k views
0 votes
1- For the points (-2,7) and (-4,5),(a) Find the exact distance between the points.(b) Find the midpoint of the line segment whose endpoints are the given points.----------------------------------------------------------------------------------------------------------------------------------2- Graph the equation y= -3x+2 on the viewing window defined by [-10,10,1} by [-10,10,1].---------------------------------------------------------------------------------------------------------------------------3-The endpoints of a diameter of a circle are (-7,2) and(-13,10) .(a) Write an equation of the circle in standard form.(b) Graph the circle.---------------------------------------------------------------------------------------------------------------------------4- Refer to the function . f= {(6,10), (-5,8), (4,6), (2,7)}For what value of X for which f(x)=10 is {.......} ?-------------------------------------------------------------------------------------------------------------------------5-Write the domain in interval notation.(a) w(x)= lx+1l+4(b) y(x)= X ➗ lx+1l+4(c) Z(x)= X ➗ lx+1l-4----------------------------------------------------------------------------------------------------------------------------6- Graph the equation and identify the x- and y-intercepts.3x=2y

1 Answer

6 votes

1.

(a) square root of 8


√(8)

(b) midpoint: (-3,8)

Step-by-step explanation:

Data:

Point 1 : (-2,7)

Point 2: (-4,5)

Formula:

. Distance


D=√((x_2-x_1)^2+(y_2-y_1)^2)

. Midpoint


M_(pt)=((x_2+x_1)/(2),(y_2+y_1)/(2))

Solution:

(a)


\begin{gathered} D=√((-4-(-2))^2+(5-7)^2) \\ D=√((-2)^2+(-2)^2) \\ D=√(4+4) \\ D=√(8) \end{gathered}

(b)


\begin{gathered} M_(pt)=((-4+(-2))/(2),(5+7)/(2)) \\ M_(pt)=((-6)/(2),(12)/(2)) \\ M_(pt)=(-3,6) \end{gathered}

User Erick Ramirez
by
9.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories