Step-by-step explanation
From the statement, we have a rectangular-shaped garden that:
• has a width ,w,,
,
• has a length ,l = w + 2ft,,
,
• an area ,A = 143 ft²,.
The area of a rectangle is given by:
![A=w\cdot l.](https://img.qammunity.org/2023/formulas/mathematics/college/3sqddpm5et6lo5jfx3eu9ez7vdm39mu4g1.png)
(1) Replacing the data from above, we have:
![143ft^2=w\cdot(w+2ft).](https://img.qammunity.org/2023/formulas/mathematics/college/x5j959fmm50x15dhtn0jfcjidb81vnxn53.png)
Rewriting this equation, we get:
![\begin{gathered} 143ft^2=w^2+2ft\cdot w, \\ w^2+2ft\cdot w-143ft^2, \\ w^2+2w-143=0. \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/lflrq7iso22o1zaq1jlgr4wft7nna4r2h6.png)
In the last equation, we have omitted the units.
(2) We know that the roots of a 2nd order polynomial equation:
![a\cdot w^2+b\cdot w+c=0.](https://img.qammunity.org/2023/formulas/mathematics/college/3evt0ibqxtlspzpzb8v3v3mwzntwoh09qb.png)
Are given by the formula:
![w_(\pm)=(-b\pm√(b^2-4ac))/(2a).](https://img.qammunity.org/2023/formulas/mathematics/college/dl9c9ui0ccaxshlo37t6rhby6y1h9ks2rf.png)
We identify the coefficients:
• a = 1,
,
• b = 2,
,
• c = -143.
Replacing these coefficients in the formula above, we get:
![\begin{gathered} w_+=(-2+√(2^2-4\cdot2\cdot(-143)))/(2\cdot1)=11, \\ w_-=(-2-√(2^2-4\cdot2\cdot(-143)))/(2\cdot1)=-13. \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/mg8m9jyfmpxnfdnw2n5qluhb8rx3kfhwd6.png)
Because w is the width, it can only take positive values, so we conclude that:
![w=11.](https://img.qammunity.org/2023/formulas/mathematics/college/ry44jzk4z7v4rhoqb1dgdf4o1keuwecy37.png)
Replacing this value in the equation for the length, we get:
![l=11ft+2ft=13ft.](https://img.qammunity.org/2023/formulas/mathematics/college/qapbck1p66izrnm6ttxws9f2tzf45e24ac.png)
Answer
Width = 11 ft and length = 13 ft