135k views
3 votes
Find all global maxima and minima values for the function y = x^2 + 54/x on the interval [1, 108).Global Maximum:Global Minimum:

User Itsjavi
by
3.5k points

1 Answer

0 votes

Given the equation:


y=x^2+(54)/(x)

Let's find the global maxima and minima values for the function on the interval [1, 108]

To find the global maxima on the interval, let's first find the derivative:


y^(\prime)=2x-(54)/(x^2)

Set the derivative to zero and solve for x:


\begin{gathered} 2x-(54)/(x^2)=0 \\ \\ (2x\left(x^2\right)-54)/(x^2)=0 \\ \\ 2x^3-54=0 \end{gathered}

Add 54 to both sides:


\begin{gathered} 2x^3-54+54=0+54 \\ \\ 2x^3=54 \\ \\ x^3=(54)/(2) \\ \\ x^3=27 \\ \\ Take\text{ the cuberoot of both sides:} \\ \sqrt[3]{x^3}=\sqrt[3]{27} \\ \\ x=3 \end{gathered}

Substitute 3 for x in the original function and solve for y:


\begin{gathered} y=x^2+(54)/(x) \\ \\ y=3^2+(54)/(3) \\ \\ y=9+18 \\ \\ y=27 \end{gathered}

Therefore, the global minima is: (3, 27)

To find the global maxima, solve for the following:

at x = 1 and at x = 108


\begin{gathered} y=1^2+(54)/(1)=54 \\ \\ \\ y=108^2+(54)/(108)=11664+0.5=11664.5 \\ \end{gathered}

Therefore, the global maxima is: (108, 11664.5)

ANSWER:

Global maximum: (108, 11664.5)

Global minimum: (3, 27)

User Stfn
by
2.9k points