Question:
Solution:
According to the figure, we have that:
![JH\text{ = GH-GJ}](https://img.qammunity.org/2023/formulas/mathematics/college/5fkrbj5imr8dnswsg1485zmvfin7jwo7pu.png)
that is:
![JH\text{ = (10x+2)-(7x-5)}](https://img.qammunity.org/2023/formulas/mathematics/college/ob0kj1iks7d95leodebrzkion5jlh6bzau.png)
this is equivalent to:
![JH\text{ = 3x +7}](https://img.qammunity.org/2023/formulas/mathematics/college/oioom6xv1jvzzhn85sax9a3b1rb3im9zh1.png)
now, the diagonals of a parallelogram bisect each other. So that, we get the following equation:
![GJ=JH](https://img.qammunity.org/2023/formulas/mathematics/college/k0jqjbpn1c7x0ncciye1zpsojeagtlscji.png)
this is equivalent to:
![7x-5=3x+7](https://img.qammunity.org/2023/formulas/mathematics/college/uwf5dq1mmcxz29qnywh2grb3c4sr6f18bn.png)
this is equivalent to:
![7x-3x\text{ = 7+5}](https://img.qammunity.org/2023/formulas/mathematics/college/fns26ch2xnoxa2xdlugofkuxdxdtp4qcb3.png)
this is equivalent to:
![4x\text{ = 12}](https://img.qammunity.org/2023/formulas/mathematics/college/lzaej7whylq8e0ad33evne8qnqh2yrqa85.png)
solving for x, we get:
![x\text{ = }(12)/(4)\text{ = 3}](https://img.qammunity.org/2023/formulas/mathematics/college/2b3s1i11s6jripevhg3oe4h1gsz2ezw5t5.png)
On the other hand, remember again that the diagonals of a parallelogram bisect each other. So that, we get the following equation:
![EJ=JI](https://img.qammunity.org/2023/formulas/mathematics/college/1uu28jeylh7nd3kd4yi8n5w9tqwkqtlbw6.png)
this is equivalent that
![37-2y=4y-5](https://img.qammunity.org/2023/formulas/mathematics/college/emaaprvf3rqsc699kib8b7kssbn84yrf95.png)
this is equivalent to:
![4y\text{ +2y = 37+5}](https://img.qammunity.org/2023/formulas/mathematics/college/cy3lsy1e3d4tmg2rz1eifim6edrl0a9nqt.png)
this is equivalent to:
![6y\text{ = 42}](https://img.qammunity.org/2023/formulas/mathematics/college/znuvrns9uxxeuwgz34oovtkkq0l0uj8wb2.png)
solving for y, we get:
![y\text{ = }(42)/(6)\text{ = 7}](https://img.qammunity.org/2023/formulas/mathematics/college/kbzd6xelfsc9u5duocxtj8ullqvfrswwlu.png)
now, applying the values obtained for x and y we get:
![GJ\text{ = 7x -5 = 7(3)-5 = 16}](https://img.qammunity.org/2023/formulas/mathematics/college/d0776ey8e8m5onu17gjtonnzn9urxenfio.png)
and
![IJ\text{ = 4y-5 = 4(7)-5 = 23}](https://img.qammunity.org/2023/formulas/mathematics/college/tu0fx50okbgfnmzqn4f4p8x55ptqieytrx.png)
we can conclude that the correct answer is:
![x\text{ = 3}](https://img.qammunity.org/2023/formulas/mathematics/college/j4616zc20u9qxejnb0ndks0i4tf4zadluk.png)
![y\text{ = 7}](https://img.qammunity.org/2023/formulas/mathematics/college/rvufttkrn2a0jxb4jnb6pcgqaqsqn1rsf4.png)
![GJ\text{ = 16}](https://img.qammunity.org/2023/formulas/mathematics/college/dnbzx90m9dlkfg6p8x31zt6q2n7ot7zoe4.png)
![IJ\text{ = 23}](https://img.qammunity.org/2023/formulas/mathematics/college/hpltwcgw3mrmknc11aiha2uwawcx9mm3bq.png)