The Graph of a Function
The formula:
![S=P(1+r)^t](https://img.qammunity.org/2023/formulas/mathematics/college/x3uy6kmzjf1ydi0ilhlx71ukj36wytytq7.png)
Will be used to calculating the future value of two conditions a and b
a) P = $60,000, r = 5% = 0.05, 0 ≤ t ≤ 12.
Substitute some selected values of t in the given interval.
For t=0:
![\begin{gathered} S=60,000(1+0.05)^0 \\ S=60,000\cdot1.05^0 \\ S=60,000 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pr6s8mo20r46962uszsyekrp1g32tqitj8.png)
For t=3:
![\begin{gathered} S=60,000(1+0.05)^3 \\ S=60,000\cdot1.05^3 \\ S=69,457.50 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/g10xs1l4dtcdfped9jdf1118lctrb8vxnz.png)
For t=6:
![\begin{gathered} \\ S=60,000\cdot1.05^6 \\ S=80,405.74 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/b0wmo1bj4nro22ub88zcne5a7yhwxrbo7w.png)
For t=9:
![\begin{gathered} S=60,000\cdot1.05^9 \\ S=93,079.69 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/uyadgxv19rz9z2qy62izn21qnuis4185bw.png)
For t=12:
![\begin{gathered} S=60,000\cdot1.05^(12) \\ S=107,751.38 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cqt62uc95a3f7lr4clrcczo759l314m8yb.png)
The graph that looks closer to the graph above is B.
b. Calculate the future value for t=5 years.
![\begin{gathered} S=60,000\cdot1.05^5 \\ S=76,576.89 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zzr1ur1vgd54tg3jkh13oivkh1nzwgb24s.png)