We know that a root of a quadratic function is a value of x that makes the function equal to 0.
So,
![\begin{gathered} \text{ if (1 + i) is a root of }y=x^2+2x+2 \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/naid2uuv0npd6udp7s8c1bs6xl5hg6utlm.png)
it must be fulfilled that,
![f(1+i)=0](https://img.qammunity.org/2023/formulas/mathematics/college/glezvlgfts0jwajngz1897oasx6k75q81o.png)
Now, we must replace (1 + i) in the function
![\begin{gathered} (1+i)^2+2(1+i)+2 \\ \\ \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/a19yhb6ovffq76djcz6e9hm8hw63drpp8a.png)
solving the parentheses,
![=1+2i+i^2+2+2i+2](https://img.qammunity.org/2023/formulas/mathematics/college/uwwtdkh87chl1txhf05zk95zlaijnnxjz1.png)
Using that i^2 = -1
![=1+2i-1+2+2i+2](https://img.qammunity.org/2023/formulas/mathematics/college/ki7dh07mip4g3r8y1kleqd8isbkfto7jjz.png)
grouping similar terms
![\begin{gathered} =(1-1+2+2)+(2i+2i) \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cd9u833qt4k4ybs5sgvehomdqtmxcc2ur0.png)
Finally, simplifying
![=4+4i](https://img.qammunity.org/2023/formulas/mathematics/college/3vzglj27n5iqjhbh56ss4h1hlqpyjpc603.png)
We can see that
![4+4i\\e0](https://img.qammunity.org/2023/formulas/mathematics/college/ynbc542ozclid3xg93yztzcutio76fzyim.png)
So, (1 + i) is not a root of the equation.
The statement is false.