Step 1:
The area of the figure = Area of the trapezium + Area of a rectangle
Step 2:
The rectangle has dimensions of 7.8m by 6m
Find the area of rectangle A
![\begin{gathered} \text{Area of the rectangle = Length }*\text{ Breadth} \\ =\text{ 6 }*\text{ 7.8} \\ =46.8m^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/lp6y2f54wpzpfm7fi6sniizsxmigxp64l8.png)
Step 3:
Area of trapezium
![\begin{gathered} \text{Area of trapezium = }(1)/(2)(\text{ sum of the length of parallel sides ) }*\text{ height} \\ \text{Area of trapezium = }(1)/(2)(\text{ a+b ) }*\text{ height} \\ a\text{ = 10m , b = 12m , height = 5m} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/a8v9j99grumho37iqexz35bb3e9f4l1wx0.png)
Next
Find the area of the trapezium B
![\begin{gathered} \text{Area of trapezium = }(1)/(2)(\text{ a+b ) }*\text{ height} \\ \text{Area of trapezium = }(1)/(2)(\text{ 12+10) }*\text{ 5} \\ \text{Area of trapezium = }(1)/(2)(\text{22 ) }*\text{5} \\ \text{Area of trapezium = }(110)/(2) \\ \text{Area of trapezium = }55m^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ms9brmbzq7fukkyg0avfd2hfhf7c3xxtks.png)
Total area = 46.8 + 55
![\begin{gathered} \text{Total area = 46.8 + 55} \\ \text{Total area = 101.8 m}^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/m1eehuiw2fthom4ynarnr6lakobsg78zab.png)
Final answer
![\begin{gathered} \text{Area of rectangle = 46.8 m}^2 \\ \text{Area of trapezium = 55 m}^2 \\ Totalarea=101.8m^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5szeg0sciij9bepn7rsb301tw82c64rmsh.png)