To answer this question, we can proceed as follows:
1. We know that the area of a rectangle is given by:
![A_(rectangle)=lw](https://img.qammunity.org/2023/formulas/mathematics/college/8iwzidrp5trxl9ls3dsoeh36i1pmm6cdb2.png)
2. And we have that:
• The ,length, is 5ft more than its width ---> x + 5.
,
• The ,width, is x.
,
• The ,area of the garden, is 336 square feet.
3. Now, we have that:
![\begin{gathered} 336=(x+5)x \\ x(x+5)=336 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/whkc6i609n5k59ez3tb19k15y0tvub4b8r.png)
4. We have to multiply the terms on the left side of the equation as follows:
![\begin{gathered} x(x+5)=336 \\ x(x)+x(5)=336 \\ x^2+5x=336 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7uove83z6kipnn3i8brdd7s9nes228wqy2.png)
5. Now we need to subtract 336 from both sides of the equation:
![\begin{gathered} x^2+5x-336=336-336 \\ x^2+5x-336=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9qmncn44tx5i65vp9vx8cinfpdvk7qcym0.png)
6. We have a quadratic equation, and we can solve it using the quadratic formula as follows:
![\begin{gathered} x=(-b\pm√(b^2-4ac))/(2a) \\ \\ ax^2+bx+c=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/88q0z7f9gmug1c2hrtauozeoi0ahvadncw.png)
7. From the resulting quadratic function, we have:
![a=1,b=5,c=-336](https://img.qammunity.org/2023/formulas/mathematics/college/fa704kb7npe2hrk2vz5ayz19m4xkwbuc07.png)
Then, we have:
![\begin{gathered} x=(-b\pm√(b^2-4ac))/(2a) \\ \\ x=\frac{-5\operatorname{\pm}√(5^2-4(1)(-336))}{2(1)} \\ \\ x=(-5\pm√(25+1344))/(2) \\ \\ x=(-5\pm√(1369))/(2) \\ \\ x=(-5\pm37)/(2) \end{gathered}]()
8. From the answer, we have two possible solutions here:
![\begin{gathered} x=(-5+37)/(2)=(32)/(2)\Rightarrow x=16 \\ \\ x=(-5-37)/(2)=(-42)/(2)\Rightarrow x=-21 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2is7ced38flayt4hz46job6s1rudfhc1g0.png)
9. Since the value of x = -21 is meaningless to this answer - the values for length or width cannot be negative, then the value for x = 16.
10. Now, to find the values for the width and the length, we have:
![\begin{gathered} w=x\Rightarrow w=16ft \\ l=x+5\Rightarrow l=16ft+5ft=21ft \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vyq74x5nu2wem9b8zrh3xkk2jp07tz2dlv.png)
In summary, we have that:
The width of the garden is 16ft, and the length of the garden is 21ft.