Given the side lengths of a triangle:
8, 10 and 15.
Let's apply the pythagorean theorem to classify the triangle.
We have:
If a²+b² = c² then it's a right triangle
If a²+b² > c² then it's an acute triangle
If a²+b² < c² then it's an obtuse triangle.
Where:
a = 8
b = 10
c = 15
Thus, we have:
![\begin{gathered} ^{}8^2+10^2=15^2 \\ \\ 64+100=225 \\ \\ 164<225 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/g5wd2gpz0qmof7353bwsxb9dpdsijmoi2c.png)
Since a²+b² < c², the triangle is an obtuse triangle.
ANSWER:
Obtuse