Given
Mean is 500 and Standard Deviation is 100.
Part A
Using Z- Score
The minimum score necessary to be in the top 10% of the SAT distribution means 90% and above
![\begin{gathered} Z=(x-\mu)/(\sigma) \\ \\ x=0.9 \\ \mu=500 \\ \sigma=100 \\ 1.282=(x-500)/(100) \\ \\ x=628.2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/84rixvtsh0u9o43fb0mfd503upjqvz2zcy.png)
Thus, the minimum score is 628. To the nearest whole number.
Part B
We want to determine the range of values that correspond to the probability;
![Pr(-ZThe z scores corresponding to this is; [tex]z=+1.282\text{ }&-1.282](https://img.qammunity.org/2023/formulas/mathematics/college/usgcjdmsuynhqx7ytr748e1zxpihzkivwu.png)
Thus;
![\begin{gathered} 1.282=(x-500)/(100)\text{ and }-1.282=(x-500)/(100) \\ 628.2=x\text{ }and\text{ }371.8 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8e1jy1ctccl4x10d8lh4hrtmhn1v7ekspd.png)
Thus, the range of scores are 372 and 628