11.4k views
2 votes
16. Find the slope of the tangent line to the given polar curve at the point specified by the value of θ.

16. Find the slope of the tangent line to the given polar curve at the point specified-example-1

1 Answer

1 vote

Given:


\begin{gathered} r=\sin\theta+5\cos\theta \\ \theta=(\pi)/(2) \end{gathered}

To find: The slope of the tangent line

Step-by-step explanation:

Let us take,


\begin{gathered} x=r\cos\theta \\ y=r\sin\theta \end{gathered}

Substituting the r-value in the above equations, we get,


x=(\sin\theta+5\cos\theta)\cos\theta

Differentiating using the product rule,


\begin{gathered} (dx)/(d\theta)=(\sin\theta+5\cos\theta)(-\sin\theta)+\cos\theta(\cos\theta-5\sin\theta) \\ =-\sin^2\theta-5\sin\theta\cos\theta+\cos^2\theta-5\sin\theta\cos\theta \\ =\cos^2\theta-\sin^2\theta..........(1) \end{gathered}

And we have,


y=(\sin\theta+5\cos\theta)\sin\theta

Differentiating using the product rule,


\begin{gathered} (dy)/(d\theta)=(\sin\theta+5\cos\theta)(cos\theta)+\sin\theta(\cos\theta-5\sin\theta) \\ =\sin\theta\cos\theta+5\cos^2\theta+\sin\theta\cos\theta-5\sin^2\theta \\ =2\sin\theta\cos\theta+5(\cos^2\theta-\sin^2\theta)..........(2) \end{gathered}

Dividing equation (2) by (1), we get


\begin{gathered} (dy)/(dx)=((dy)/(d\theta))/((dx)/(d\theta)) \\ =(2\sin\theta\cos\theta+5(\cos^2\theta-\sin^2\theta))/(\cos^2\theta-sin^2\theta) \end{gathered}

The slope of the tangent line at the given angle is,


\begin{gathered} [(dy)/(dx)]_{(\pi)/(2)}=(2(1)(0)+5(0-1))/(0-1) \\ =-(5)/(-1) \\ =5 \end{gathered}

Final answer:

The slope of the tangent line to the given polar curve at the point specified by the value of θ is 5.

User Emeeery
by
5.7k points