We need to write as an exponential in fractional form the expression:

The "eighth root" is represented by the symbol:
![\sqrt[8]{\ldots}](https://img.qammunity.org/2023/formulas/mathematics/college/xtewcgc742atctufyxgniwb39fqkvfyyo0.png)
And the exponential "fifty-seven to the sixth degree" is:

So, the whole expression is written as:
![\sqrt[8]{57^6}](https://img.qammunity.org/2023/formulas/mathematics/college/toc48p5lh6h65ktuwt9682qe69u8ru4zqz.png)
Now, we need to use the following properties of exponentials:
![\begin{gathered} \sqrt[n]{x}=x^{(1)/(n)} \\ \\ (y^a)^b=y^(a\cdot b) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5owbhlud4qvmyjyjnkly2mhbkijbnerajn.png)
Then, using those properties, we obtain:
![\sqrt[8]{57^6}=(57^6)^{(1)/(8)}=57^{6\cdot(1)/(8)}](https://img.qammunity.org/2023/formulas/mathematics/college/kiqiki185fc8549uo4uaqb2pzf4c5kyfuy.png)
Notice that:

Thus, we obtain:
![\sqrt[8]{57^6}=57^{(3)/(4)}](https://img.qammunity.org/2023/formulas/mathematics/college/xg0sbdfr6hvvou74vnjf1l164jv72f84ah.png)