47.6k views
1 vote
Find the zeros by using the quadratic formula and tell whether the solutions are real or imaginary. F(x)=x^2–10x+30

1 Answer

1 vote

Answer:

The solution are imaginary numbers (complex numbers)


\begin{gathered} x=\frac{10+i\sqrt[]{20}}{2}=5+i\frac{\sqrt[]{20}}{2}=5+2.24i \\ \text{and} \\ x=\frac{10-i\sqrt[]{20}}{2}=5-i\frac{\sqrt[]{20}}{2}=5-2.24i \end{gathered}

Step-by-step explanation:

Given the quadratic function;


f(x)=x^2-10x+30

The zeros of the function are at f(x)=0;


\begin{gathered} f(x)=x^2-10x+30=0 \\ x^2-10x+30=0 \end{gathered}

Solving using the quadratic formula;


x=\frac{-b\pm\sqrt[]{b^2-4ac}_{}}{2a}

where;

a = 1

b = -10

c = 30

Substituting the values, we have;


\begin{gathered} x=\frac{-b\pm\sqrt[]{b^2-4ac}_{}}{2a} \\ x=\frac{-(-10)\pm\sqrt[]{(-10)^2-4(1)(30)}_{}}{2(1)} \\ x=\frac{10\pm\sqrt[]{100^{}-120}_{}}{2} \\ x=\frac{10\pm\sqrt[]{-20}_{}}{2} \\ x=\frac{10\pm\sqrt[]{(-1)20}_{}}{2} \\ x=\frac{10\pm\sqrt[]{(i^2)20}_{}}{2} \\ x=\frac{10\pm i\sqrt[]{20}_{}}{2} \end{gathered}

Recall that;


-1=i^2

Solving further we have;


\begin{gathered} x=\frac{10+i\sqrt[]{20}}{2}=5+i\frac{\sqrt[]{20}}{2}=5+2.24i \\ \text{and} \\ x=\frac{10-i\sqrt[]{20}}{2}=5-i\frac{\sqrt[]{20}}{2}=5-2.24i \end{gathered}

Therefore, the solution are imaginary numbers (complex numbers)

User Sasha Kozachuk
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.