Answer:
The solution are imaginary numbers (complex numbers)
![\begin{gathered} x=\frac{10+i\sqrt[]{20}}{2}=5+i\frac{\sqrt[]{20}}{2}=5+2.24i \\ \text{and} \\ x=\frac{10-i\sqrt[]{20}}{2}=5-i\frac{\sqrt[]{20}}{2}=5-2.24i \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ark6k051no1jrotf5gp5en2744cywia6zd.png)
Step-by-step explanation:
Given the quadratic function;

The zeros of the function are at f(x)=0;

Solving using the quadratic formula;
![x=\frac{-b\pm\sqrt[]{b^2-4ac}_{}}{2a}](https://img.qammunity.org/2023/formulas/mathematics/college/otjilv1piqld8r71f8ollu8s46dvjcv8jm.png)
where;
a = 1
b = -10
c = 30
Substituting the values, we have;
![\begin{gathered} x=\frac{-b\pm\sqrt[]{b^2-4ac}_{}}{2a} \\ x=\frac{-(-10)\pm\sqrt[]{(-10)^2-4(1)(30)}_{}}{2(1)} \\ x=\frac{10\pm\sqrt[]{100^{}-120}_{}}{2} \\ x=\frac{10\pm\sqrt[]{-20}_{}}{2} \\ x=\frac{10\pm\sqrt[]{(-1)20}_{}}{2} \\ x=\frac{10\pm\sqrt[]{(i^2)20}_{}}{2} \\ x=\frac{10\pm i\sqrt[]{20}_{}}{2} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/2m9y3pnnv3z51ioyn9jf1pspuuxestxpvz.png)
Recall that;

Solving further we have;
![\begin{gathered} x=\frac{10+i\sqrt[]{20}}{2}=5+i\frac{\sqrt[]{20}}{2}=5+2.24i \\ \text{and} \\ x=\frac{10-i\sqrt[]{20}}{2}=5-i\frac{\sqrt[]{20}}{2}=5-2.24i \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ark6k051no1jrotf5gp5en2744cywia6zd.png)
Therefore, the solution are imaginary numbers (complex numbers)