94.8k views
1 vote
Integral e^2x/ 9+e^4x, finding the indefinite integral

1 Answer

5 votes

The given integral expression is :


\int (e^(2x))/(9+e^(4x))dx

Apply u-substitution method :


\begin{gathered} \text{Let u = e}^(2x) \\ \text{Differentiate with respect x} \\ (du)/(dx)=2e^(2x) \\ du=2e^(2x)dx \\ (du)/(2)=e^(2x)dx \\ \text{ So, substitute }e^(2x)dx\text{ = }(du)/(2)\text{ and u = e}^(2x)\text{ in the given integral } \end{gathered}

Thus the integral become :


\begin{gathered} \int (e^(2x))/(9+e^(4x))dx=\int (e^(2x))/(9+e^(2x)e^(2x))dx \\ \int (e^(2x))/(9+e^(4x))dx=\int \frac{1^{}}{9+u\cdot u^{}}(du)/(2) \\ \int (e^(2x))/(9+e^(4x))dx=(1)/(2)\int \frac{1^{}}{9+u^2^{}}du \end{gathered}

Apply the integral substitution : u = 3v


\begin{gathered} u\text{ =3v} \\ \text{differentiate : du =3dv} \\ \text{substitute the value :} \end{gathered}


\begin{gathered} \int (e^(2x))/(9+e^(4x))dx=(1)/(2)\int \frac{1^{}}{9+u^2^{}}du \\ \int (e^(2x))/(9+e^(4x))dx=(1)/(2)\int (3dv)/(9+(3v)^2) \\ \int (e^(2x))/(9+e^(4x))dx=(1)/(2)\int (3dv)/(9+9v^2) \\ \int (e^(2x))/(9+e^(4x))dx=(1)/(2)\int (3dv)/(9(1+v^2)) \\ \int (e^(2x))/(9+e^(4x))dx=(1)/(2)\int (dv)/(3(1+v^2)) \\ \int (e^(2x))/(9+e^(4x))dx=(1)/(6)\int (dv)/((1+v^2)) \end{gathered}

Apply the integral expression :


\int (dx)/(1+x^2)=\arctan x

So, the expression will be :


\begin{gathered} \int (e^(2x))/(9+e^(4x))dx=(1)/(6)\int (dv)/((1+v^2)) \\ \int (e^(2x))/(9+e^(4x))dx=(1)/(6)\arctan (v)+C \end{gathered}

substitute the value of v = u/3


\begin{gathered} \int (e^(2x))/(9+e^(4x))dx=(1)/(6)\arctan (v)+C \\ \int (e^(2x))/(9+e^(4x))dx=(1)/(6)\arctan ((u)/(3))+C \end{gathered}

Now, substitute u = e^2x


\begin{gathered} \int (e^(2x))/(9+e^(4x))dx=(1)/(6)\arctan ((u)/(3))+C \\ \int (e^(2x))/(9+e^(4x))dx=(1)/(6)\arctan ((e^(2x))/(3))+C \end{gathered}

Answer :


\int (e^(2x))/(9+e^(4x))dx=(1)/(6)\arctan ((e^(2x))/(3))+C

User Jay Mitchell
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories