The answer is: y = - 150x + 8400
The two points are given in the (x, y) format. Meaning that
x1= 0 and y1 = 8400, while
x2 = 10 and y2 = 6900.
We are required to find the slope given two points (0, 8400) and (10, 6900).
This is easily done if we use the slope formula.
The slope formula is given below:
![\begin{gathered} m=(y_2-y_1)/(x_2-x_1) \\ m=\text{Slope} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/mw3w4lr70a1b11kf26upd2jo3g8u3jo4c4.png)
Now we can proceed to finding the slope:
![\begin{gathered} m=(6900-8400)/(10-0)=-(1500)/(10) \\ \\ \therefore m=-150 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/284tejftkgkxfs1435xi08nm4g2l6icr0w.png)
Now that we have the slope (m), we can also find the intercept (b) using the equation given in the question:
![y=mx+b](https://img.qammunity.org/2023/formulas/mathematics/high-school/smsb8cbft03lwblmi49nf2l6jby2ofxzws.png)
Here we shall use any of the coordinates: (10, 6900) or (0, 8400)
Using (10, 6900) implies: x = 10 and y = 6900
Substituting these values into the equation above:
![\begin{gathered} y=mx+b \\ y=6900, \\ x=10 \\ m=-150 \\ \\ 6900=-150*10+b \\ 6900=-1500+b \\ \text{add 1500 to both sides} \\ \\ 6900+1500=-1500+1500+b \\ 8400=b \\ \therefore b=8400 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2oiapg03bcywp92fjwz3u61mv9vy7xy5zs.png)
Since we now have slope (m) and intercept (b), we can therefore write the equation as follows:
![\begin{gathered} y=mx+b \\ m=-150 \\ b=8400 \\ \\ \therefore y=-150x+8400 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xnb7dydkrr5tqi1joqiv6yp75y6fnnqhiu.png)
The final answer is: y = - 150x + 8400