Step 1. The two points we have are:
![\begin{gathered} (-26,-37) \\ \text{and} \\ (-32,-61) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/uv4dqw24uu3af7fbtk1sxs7oenffqxqp7m.png)
we will label these points as (x1,y1) and (x2,y2):
![\begin{gathered} x=-26 \\ y_1=-37_{} \\ x_2=-32 \\ y_2=-61 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/onzze7quhhl6kjihez928s0iz93pvzln1t.png)
Step 2. Now that we have labeled the points, we can use the slope formula to find the slope ''m'' of the line:
![m=(y_2-y_1)/(x_2-x_1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/78uaqhwt0aws3qfwxigaftpihnmb1gzxtp.png)
Substituting the known values:
![m=(-61-(-37))/(-32-(-26))](https://img.qammunity.org/2023/formulas/mathematics/high-school/9ttcggiq8uxjogfhb5kti3mnbz4b2tt0lf.png)
Step 3. Simplify the signs in the operations.
-(-37) is +37,
and -(-26) is +26:
![m=(-61+37)/(-32+26)](https://img.qammunity.org/2023/formulas/mathematics/high-school/ydcqgw9097zfg3crxkpoowpz7shx7kse9e.png)
Step 4. Make the operations:
![m=(-24)/(-6)](https://img.qammunity.org/2023/formulas/mathematics/high-school/yxh2we9918erx7rcsyuf35e43lew6zpasw.png)
The result of this division is:
![m=4](https://img.qammunity.org/2023/formulas/mathematics/high-school/36nosznkpngnu0lpjc0o9ahw3mnq9ghl3s.png)
The slope of the line is 4.
Answer:
4