In order to convert a point from rectangular coordinates (x, y) to polar coordinates (r, θ), we can use the following:
![\begin{gathered} r=\sqrt[]{x^(2)+y^(2)} \\ \\ \tan \theta=(y)/(x) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/kgnw7bxks95u1qo017c1zr7zjhmewh5iql.png)
In this problem, we need to convert to polar coordinates the point (9, 9). So, we have:
x = 9
y = 9
Then, using those values in the above formulas, we obtain:
![\begin{gathered} r=\sqrt[]{9^(2)+9^(2)}=\sqrt[]{2\cdot9^(2)}=9\sqrt[]{2} \\ \\ \tan \theta=(9)/(9)=1\text{ }\Rightarrow\text{ }\theta=(\pi)/(4)\text{ because }\tan (\pi)/(4)=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jgo85dul396jztzpmcp3l73h9p59iixzy7.png)
So, in polar coordinates, this point is written as
![\mleft(9\sqrt[]{2},(\pi)/(4)\mright)](https://img.qammunity.org/2023/formulas/mathematics/college/ckwmei3rg88ajcjzlnbyw8bty1afpl7j2g.png)