109k views
1 vote
Hello. Can someone answe this question? It is a "verify the identity" question. Thank you.

Hello. Can someone answe this question? It is a "verify the identity" question-example-1
User Stern
by
7.8k points

1 Answer

3 votes

The given identity is:


\frac{\sin^2\theta\text{ - 1}}{\tan\theta\sin\theta-\tan\theta}=\frac{\sin \theta\text{ + 1}}{\tan \theta\text{ }}

Let us prove from the Right Hand Side:


\begin{gathered} \frac{\sin \theta\text{ +1}}{\tan \theta\text{ }} \\ \text{Rationalise the expression by multiplying both the numerator and } \\ \text{denominator by sin}\theta\text{ - 1} \end{gathered}

The expression becomes:


\begin{gathered} \frac{\sin\theta\text{ + 1}}{\tan\theta}=\text{ }\frac{(\sin \theta\text{ + 1)(}\sin \theta\text{ - 1)}}{(\tan \theta\text{ )(sin}\theta-\text{ 1)}} \\ \frac{\sin\theta\text{ + 1}}{\tan\theta}=\text{ }\frac{\sin ^2\theta-\sin \theta\text{ + sin}\theta\text{ - 1}}{\tan \theta\sin \theta-\tan \theta} \\ \frac{\sin\theta\text{ + 1}}{\tan\theta}\text{ = }\frac{\sin ^2\theta\text{ - 1}}{\tan \theta\sin \theta-\tan \theta}\text{ (Proved)} \end{gathered}

User Machine Tribe
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories