![A^(\prime)^(\prime)(-6,-6)](https://img.qammunity.org/2023/formulas/mathematics/college/xns67eim0z71wou0zanw4n0z81blk3nipn.png)
Step-by-step explanation
Step 1
a) Plot the triangle
Step 2
now, do the transformations
Transformation 1
reflected across the y-axis:
The rule for a reflection over the y -axis is
![(x,y)\Rightarrow(-x,y)](https://img.qammunity.org/2023/formulas/mathematics/college/i1ysqez8lv2tgl97qe0q9kj1zucffvdsl1.png)
hence
![\begin{gathered} A(2,-2)\Rightarrow reflected\text{ y-axis}\Rightarrow A^(\prime)(-2,-2) \\ B(-1,-1)\operatorname{\Rightarrow}reflected\text{y-ax}\imaginaryI\text{s}\operatorname{\Rightarrow}B^(\prime)(1,-1) \\ C(0,2)\operatorname{\Rightarrow}reflected\text{y-ax}\imaginaryI\text{s}\operatorname{\Rightarrow}C^(\prime)(0,2) \end{gathered}]()
so
Step 3
transformation 2:
b)dilated by a factor of 3 with the origin as the center of dilation:
A dilation with scale factor k centered at the origin will take each point
and
![P(x,y)\Rightarrow dilated\text{ \lparen}K\text{ is the factor\rparen}\Rightarrow P^(\prime)(kx,yx)](https://img.qammunity.org/2023/formulas/mathematics/college/mya67pwnxyagrwn96wqg9vhqhddmkb6838.png)
so
in this case the factor is 3,hence
![\begin{gathered} A^(\prime)(-2,-2)\Rightarrow dilated\text{ by a factor of 3}\Rightarrow A^(\prime)^(\prime)(-6,-6) \\ B^(\prime)(1,-1)\operatorname{\Rightarrow}dilated\text{ by a factor of 3}\Rightarrow B^(\prime)^(\prime)(3,-3) \\ C^(\prime)(0,2)\operatorname{\Rightarrow}dilated\text{ by a factor of 3}\Rightarrow C^{\prime^(\prime)}(0,6) \end{gathered}]()
so,the coordinate of teh A'' is
![A^(\prime)^(\prime)(-6,-6)](https://img.qammunity.org/2023/formulas/mathematics/college/xns67eim0z71wou0zanw4n0z81blk3nipn.png)
I hope this helps you