$67247.39
Step-by-step explanation
Step 1
find the average of the 3 highest years salaries
Let
![\begin{gathered} \text{salary}_1=88000 \\ \text{salary}_2=91000 \\ \text{salary}_3=92250 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wj00xldhl6d0rc67x14bpj27104tv8tcqv.png)
hence
![\begin{gathered} \text{salary average=}(salary_1+salary_2+salary_3)/(3) \\ \text{salary average=}(88000+91000+92250)/(3) \\ \text{salary average=}(271250)/(3) \\ \text{salary average=90416.67} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/h3i1d66k19gg7kxkzlahc26mcudnujkt59.png)
Step 2
find the 2.125 % of salary average
![2.125\text{ \% = }\frac{\text{2.125}}{100}=0.02125](https://img.qammunity.org/2023/formulas/mathematics/college/jy5mwu18u2vmtxolv0cts5s75yrppcydtl.png)
so, to find the 2.125 % of any number, multiply the number by 0.02125
Hence
![21.25\text{ \% of 90416.67=0.019212125}\cdot90416.67=1921.35](https://img.qammunity.org/2023/formulas/mathematics/college/8hd2fn40q9p2rgdusjzhxo5swzjwrrv81r.png)
Step 3
find the pension
pension that is calculated by multiplying the number of years worked times 2.125% of the average of the 3 highest year's salaries.
Let
years John worked=35
replace
![\begin{gathered} \text{Pension}=35\cdot1921.35 \\ \text{Pension}=67247 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/m1pamth9s9o7id4recqhthvgl7cj69jzen.png)
I hope this helps you