The points we have are:
![\begin{gathered} M\mleft(5,-2\mright) \\ N\mleft(-7,6\mright) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4qemfe02e7ieplks0smwcrwyotehlmmnf3.png)
We label this points as follows for reference:
![\begin{gathered} x_1=5 \\ y_1=-2 \\ x_2=-7 \\ y_2=6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2dpvtryqw1efa1bhnr3cnnjgmksx1hgkkm.png)
We have that the ratio is:
![1\colon3](https://img.qammunity.org/2023/formulas/mathematics/college/oovfh87606wofodsw2o28qlpujsu0xo1yt.png)
Where we will call a=1 and b=3.
And we use the following formula for finding the coordinates of a point given the two endpoints and the ratio:
![(\frac{bx_1+a_{}x_2}{a+b},(by_1+ay_2)/(a+b))](https://img.qammunity.org/2023/formulas/mathematics/college/ywhn3d36akl7ayjefeqxjxd7ol7kzyu0k4.png)
Substituting our values:
![((3(5)+1(-7))/(1+3),(3(-2)+1(6))/(1+3))](https://img.qammunity.org/2023/formulas/mathematics/college/ydb8ygo6v0vo5xezf0fr0fjear1gyzln79.png)
We solve the operations:
![((15-7)/(4),(-6+6)/(4))](https://img.qammunity.org/2023/formulas/mathematics/college/c6b2y3pd31u0t6x12ro21cvg8d67p4nics.png)
![\begin{gathered} ((8)/(4),(0)/(4)) \\ (2,0) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tlkvnylwk80c9ky94malotd6way9a5sp99.png)
Point P is at (2,0)