$33,297.3
Step-by-step explanation
to know the future value of that amount we need to use the formula
![A=\text{ P(1+}(r)/(n))^(nt)](https://img.qammunity.org/2023/formulas/mathematics/college/m2zfm0onpazknt3ys2zpxugd4b5bax88hs.png)
where
P is the principal ( initial amount)
r is the rate ( in decimals)
n is the number of times the interest is compounded per unit t
t is the time
so
Let
![\begin{gathered} P=28600 \\ r=7.9\text{ \%= }(7.9)/(100)=0.079 \\ n=\text{ 1 ( compounded annually)} \\ t=\text{ 2 } \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/94w9vw0k8hyisu8j573qus1dcykdokvpfx.png)
now, replace and calculate
![\begin{gathered} A=\text{ P(1+}(r)/(n))^(nt) \\ A=28600(1+(0.079)/(1))^(1\cdot2) \\ A=28600(1.079)^2 \\ A=28600\cdot(1.164241) \\ A=33297.2926 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ox9qnlisdijf1n433fp19m2i0zk8yrxls3.png)
therefore, the answer is
$33,297.3
I hope this helps you