Let call the amount Kevin has x and the amount Diana has y.
The equations describing this situation are
![x-16=y](https://img.qammunity.org/2023/formulas/mathematics/college/kbr57erqpk7fi6bfwnuo8urnzg7apdk22j.png)
![y-20=0.1x](https://img.qammunity.org/2023/formulas/mathematics/college/47eoh5f1uokdta2zibjppxwrhp979n9dll.png)
Let us now solve the system.
The first equation gives us
![x=y+16](https://img.qammunity.org/2023/formulas/mathematics/college/zq5kgw6qrhkhy5n6h1lewvm7v8cuayvpko.png)
putting this into the second equation gives us
![y-20=0.1(y+16)](https://img.qammunity.org/2023/formulas/mathematics/college/aflmsjiszfjiikl6yb69obqr3l8l7e8l1c.png)
which simplifies to
![y-20=0.1y+1.6](https://img.qammunity.org/2023/formulas/mathematics/college/z8py91f9eryd3cu98xwt5fgprokzmdu949.png)
Combing terms gives us
![0.9y=21.6](https://img.qammunity.org/2023/formulas/mathematics/college/yzi78u1ml1npqyxoqcc0krntpe5upbn3yi.png)
and dividing both sides by 0.9 gives us
![y=24](https://img.qammunity.org/2023/formulas/mathematics/high-school/wyj9l9ef19d9xkdf1f57gezhpk45318jws.png)
And now we solve for x.
![x=16+24](https://img.qammunity.org/2023/formulas/mathematics/college/pyjudp2wq0je6f1jum15kpdloy1d826cv5.png)
x = 40 and y =16
which is our answer!