ANSWER
![x\text{ = }(2)/(3)\text{ + i}\frac{\sqrt[]{2}}{3}\text{and x = }(2)/(3)-\text{ i}\frac{\sqrt[]{2}}{3}](https://img.qammunity.org/2023/formulas/mathematics/college/9guz0dhuambxcji5ryai7t3k377yqv6wj7.png)
Step-by-step explanation
A quadratic function is generally given as:

The quadratic formula used to find the roots of a quadratic equation(function) is:
![x\text{ = }\frac{-b\text{ }\pm\text{ }\sqrt[]{b^2\text{ - 4ac}}}{2a}](https://img.qammunity.org/2023/formulas/mathematics/college/az0np1u8d52sprtutjbiz5w4rmpqgit2cr.png)
From the function given, we have that:
a = 3, b = -4, c = 2
Therefore, the roots of the function are:
![\begin{gathered} x\text{ = }\frac{-(-4)\text{ }\pm\sqrt[]{(-4)^2\text{ - 4(3)(2)}}}{2(3)} \\ x\text{ = }\frac{4\pm\sqrt[]{16\text{ - }24}}{6} \\ x\text{ = }\frac{4\text{ }\pm\sqrt[]{-8}}{6} \\ x\text{ = }\frac{2\text{ + 2 }\sqrt[]{-2}}{3}\text{ and x = }\frac{2\text{ - 2 }\sqrt[]{-2}}{3} \\ x\text{ = }(2)/(3)\text{ + i}\frac{\sqrt[]{2}}{3}\text{and x = }(2)/(3)-\text{ i}\frac{\sqrt[]{2}}{3} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/kl8b5gwid25ua2v2iujtfewf44esfkmiln.png)