Given:
Required:
We need to find the area of given pantagon
Step-by-step explanation:
First take one triangle with center angle is
![(360)/(5)=72\degree](https://img.qammunity.org/2023/formulas/mathematics/college/6ljct8970f1aqskkswcswxibfuuls5koh9.png)
now triangle is as
use sin function to find b
![\begin{gathered} sin36=(b)/(r) \\ \\ b=10.58\text{ mm} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2xfhv4q5a1vcwg2t0qlfv6t9bafiza9xqv.png)
B is
![B=2b=2*10.58=21.16\text{ mm}](https://img.qammunity.org/2023/formulas/mathematics/college/kzhyepjhcchl3udxm1p0ikyg02y0xqo1ax.png)
now to find h
use cos function
![\begin{gathered} cos36=(h)/(r) \\ \\ h=14.56\text{ mm} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bhq9k5qgi6rqk5nmi98e55frkeao2kgejl.png)
area of one triangle is
![a=(1)/(2)Bh=(1)/(2)*14.56*21.16=154.07\text{ mm}^2](https://img.qammunity.org/2023/formulas/mathematics/college/y6r58lgz8atgcxiq7opahx84av35z8193h.png)
area A of pentagone is
Final answer:
![A=5a=770.35\approx770\text{ mm}^2](https://img.qammunity.org/2023/formulas/mathematics/college/1oay5kpd5ibeslgz9qh6me3d4ppwhlnryq.png)