Since 15.3 L was used, we can convert this to mass using the density:
![\begin{gathered} \rho=(m)/(V) \\ m=\rho\cdot V \end{gathered}](https://img.qammunity.org/2023/formulas/chemistry/college/138gfoxjbxix0frikgas667fj01trsoota.png)
Using the density of 0.755 g/mL, we need to convert the volume to mL, so:
![V=15.3L=15300mL](https://img.qammunity.org/2023/formulas/chemistry/college/dg6plj1rx5u0ax4hd4u9x6ke6hm3pb1dxo.png)
Now, using the volume and the density, we have:
![m=\rho\cdot V=0.755g\/mL\cdot15300mL=11551.5g=1.15515*10^4g\approx1.16*10^4g](https://img.qammunity.org/2023/formulas/chemistry/college/drqqcfez8wfuf9rpe4jalwqarnoh045a3l.png)
So, the mass in grams is approximately 1.16 x 10⁴ g.
To convert to ounces, we can divide the value in grams by approximately 28.349523:
![m=11551.5g=(11551.5)/(28.349523)oz=407.467\ldots oz\approx407oz](https://img.qammunity.org/2023/formulas/chemistry/college/fbogzwh11ekdaj2rh92y78d0l9ekvk0z6f.png)
So, the mass in ounces is approximately 407 oz.