Given:
The set of side lengths are:
2, 3, 13
5, 7, 12
10, 24, 29,
11, 60, 61
Required:
Find the set that is a Pythagorean triple.
Step-by-step explanation:
The Pythagoras theorem is given as:
![(hyp.)^2=(opp.)^2+(adj.)^2](https://img.qammunity.org/2023/formulas/mathematics/college/inrof8pr3f4y9kcxeu1c44tmjn7z2ygdr4.png)
The hypotenuse side is the longest side.
Take the set 2,3,13
![\begin{gathered} (13)^2=(2)^2+(3)^2 \\ 169=4+9 \\ 169=13 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ymtvret7cb955wmt3kyozp18b8i4cm87hi.png)
This is not true.
Take the sets 5, 7, 12
![\begin{gathered} (12)^2=(5)^2+(7)^2 \\ 144=25+49 \\ 144=74 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/quia2ogaeg7j55z0csrhp7j2ld0yg7hr8u.png)
This is not true.
Take the sets 10, 24, 29
![\begin{gathered} (29)^2=(24)^2+(10)^2 \\ 841=576+100 \\ 841=676 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4nxxd82fnw1guf6dnnyqi68neliliiiju8.png)
This is not true.
Take the sets 11, 60, 61
![\begin{gathered} (61)^2=(60)^2+(11)^2 \\ 3721=3600+121 \\ 3721=3721 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jryg6davrp6ohc8b3rq9w0hnu0ff5k1wwq.png)
This is true.
So the set 11, 60, and 61 makes a Pythagorean triple.
Final Answer:
The last option is the correct answer.